Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
J Exp Med ; 221(5)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38557723

RESUMO

CD4+ T cells are vital for host defense and immune regulation. However, the fundamental role of CD4 itself remains enigmatic. We report seven patients aged 5-61 years from five families of four ancestries with autosomal recessive CD4 deficiency and a range of infections, including recalcitrant warts and Whipple's disease. All patients are homozygous for rare deleterious CD4 variants impacting expression of the canonical CD4 isoform. A shorter expressed isoform that interacts with LCK, but not HLA class II, is affected by only one variant. All patients lack CD4+ T cells and have increased numbers of TCRαß+CD4-CD8- T cells, which phenotypically and transcriptionally resemble conventional Th cells. Finally, patient CD4-CD8- αß T cells exhibit intact responses to HLA class II-restricted antigens and promote B cell differentiation in vitro. Thus, compensatory development of Th cells enables patients with inherited CD4 deficiency to acquire effective cellular and humoral immunity against an unexpectedly large range of pathogens. Nevertheless, CD4 is indispensable for protective immunity against at least human papillomaviruses and Trophyrema whipplei.


Assuntos
Linfócitos T CD4-Positivos , Linfócitos T Auxiliares-Indutores , Humanos , Linfócitos T CD8-Positivos , Ativação Linfocitária , Antígenos HLA , Isoformas de Proteínas/metabolismo
2.
Am J Hum Genet ; 111(4): 791-804, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38503300

RESUMO

Mutations in proteasome ß-subunits or their chaperone and regulatory proteins are associated with proteasome-associated autoinflammatory disorders (PRAAS). We studied six unrelated infants with three de novo heterozygous missense variants in PSMB10, encoding the proteasome ß2i-subunit. Individuals presented with T-B-NK± severe combined immunodeficiency (SCID) and clinical features suggestive of Omenn syndrome, including diarrhea, alopecia, and desquamating erythematous rash. Remaining T cells had limited T cell receptor repertoires, a skewed memory phenotype, and an elevated CD4/CD8 ratio. Bone marrow examination indicated severely impaired B cell maturation with limited V(D)J recombination. All infants received an allogeneic stem cell transplant and exhibited a variety of severe inflammatory complications thereafter, with 2 peri-transplant and 2 delayed deaths. The single long-term transplant survivor showed evidence for genetic rescue through revertant mosaicism overlapping the affected PSMB10 locus. The identified variants (c.166G>C [p.Asp56His] and c.601G>A/c.601G>C [p.Gly201Arg]) were predicted in silico to profoundly disrupt 20S immunoproteasome structure through impaired ß-ring/ß-ring interaction. Our identification of PSMB10 mutations as a cause of SCID-Omenn syndrome reinforces the connection between PRAAS-related diseases and SCID.


Assuntos
Imunodeficiência Combinada Severa , Lactente , Humanos , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Mutação/genética , Linfócitos T/metabolismo , Mutação de Sentido Incorreto/genética
3.
Am J Kidney Dis ; 83(2): 183-195, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37717846

RESUMO

RATIONALE & OBJECTIVE: Genetic etiologies have been identified among approximately 10% of adults with chronic kidney disease (CKD). However, data are lacking regarding the prevalence of monogenic etiologies especially among members of minority groups. This study characterized the genetic markers among members of an Israeli minority group with end-stage kidney disease (ESKD). STUDY DESIGN: A national-multicenter cross-sectional study of Israeli Druze patients (an Arabic-speaking Near-Eastern transnational population isolate) who are receiving maintenance dialysis for ESKD. All study participants underwent exome sequencing. SETTING & PARTICIPANTS: We recruited 94 adults with ESKD, comprising 97% of the total 97 Druze individuals throughout Israel being treated with dialysis during the study period. PREDICTORS: Demographics and clinical characteristics of kidney disease. OUTCOME: Genetic markers. ANALYTICAL APPROACH: Whole-exome sequencing and the relationship of markers to clinical phenotypes. RESULTS: We identified genetic etiologies in 17 of 94 participants (18%). None had a previous molecular diagnosis. A novel, population-specific, WDR19 homozygous pathogenic variant (p.Cys293Tyr) was the most common genetic finding. Other monogenic etiologies included PKD1, PKD2, type IV collagen mutations, and monogenic forms of noncommunicable diseases. The pre-exome clinical diagnosis corresponded to the final molecular diagnosis in fewer than half of the participants. LIMITATIONS: This study was limited to Druze individuals, so its generalizability may be limited. CONCLUSIONS: Exome sequencing identified a genetic diagnosis in approximately 18% of Druze individuals with ESKD. These results support conducting genetic analyses in minority populations with high rates of CKD and for whom phenotypic disease specificity may be low. PLAIN-LANGUAGE SUMMARY: Chronic kidney disease (CKD) affects many people worldwide and has multiple genetic causes. However, there is limited information on the prevalence of genetic etiologies, especially among minority populations. Our national-multicenter study focused on Israeli Druze patients. Using exome-sequencing, we identified previously undetected genetic causes in nearly 20% of patients, including a new and population-specific WDR19 homozygous pathogenic variant. This mutation has not been previously described; it is extremely rare globally but is common among the Druze, which highlights the importance of studying minority populations with high rates of CKD. Our findings provide insights into the genetic basis of end-stage kidney disease in the Israeli Druze, expand the WDR19 phenotypic spectrum, and emphasize the potential value of genetic testing in such populations.


Assuntos
Falência Renal Crônica , Insuficiência Renal Crônica , Adulto , Humanos , Grupos Minoritários , Israel/epidemiologia , Marcadores Genéticos , Estudos Transversais , Falência Renal Crônica/epidemiologia , Falência Renal Crônica/genética , Falência Renal Crônica/terapia , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/diagnóstico
4.
J Med Genet ; 61(3): 289-293, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-37833060

RESUMO

BACKGROUND: Neurodevelopmental disorders (NDDs) impact both the development and functioning of the brain and exhibit clinical and genetic variability. RAP and RAB proteins, belonging to the RAS superfamily, are identified as established contributors to NDDs. However, the involvement of SGSM (small G protein signalling modulator), another member of the RAS family, in NDDs has not been previously documented. METHODS: Proband-only or trio exome sequencing was performed on DNA samples obtained from affected individuals and available family members. The variant prioritisation process focused on identifying rare deleterious variants. International collaboration aided in the identification of additional affected individuals. RESULTS: We identified 13 patients from 8 families of Ashkenazi Jewish origin who all carried the same homozygous frameshift variant in SGSM3 gene. The variant was predicted to cause a loss of function, potentially leading to impaired protein structure or function. The variant co-segregated with the disease in all available family members. The affected individuals displayed mild global developmental delay and mild to moderate intellectual disability. Additional prevalent phenotypes observed included hypotonia, behavioural challenges and short stature. CONCLUSIONS: An Ashkenazi Jewish homozygous founder variant in SGSM3 was discovered in individuals with NDDs and short stature. This finding establishes a connection between another member of the RAS family and NDDs. Additional research is needed to uncover the specific molecular mechanisms by which SGSM3 influences neurodevelopmental processes and the regulation of growth.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Deficiência Intelectual/genética , Judeus/genética , Homozigoto , Síndrome
5.
Kidney Int Rep ; 8(10): 2126-2135, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37850020

RESUMO

Introduction: Genetic etiologies are estimated to account for a large portion of chronic kidney diseases (CKD) in children. However, data are lacking regarding the true prevalence of monogenic etiologies stemming from an unselected population screen of children with advanced CKD. Methods: We conducted a national multicenter prospective study of all Israeli pediatric dialysis units to provide comprehensive "real-world" evidence for the genetic basis of childhood kidney failure in Israel. We performed exome sequencing and assessed the genetic diagnostic yield. Results: Between 2019 and 2022, we recruited approximately 88% (n = 79) of the children on dialysis from all 6 Israeli pediatric dialysis units. We identified genetic etiologies in 36 of 79 (45%) participants. The most common subgroup of diagnostic variants was in congenital anomalies of the kidney and urinary tract causing genes (e.g., EYA1, HNF1B, PAX2, COL4A1, and NFIA) which together explain 28% of all monogenic etiologies. This was followed by mutations in genes causing renal cystic ciliopathies (e.g., NPHP1, NPHP4, PKHD1, and BBS9), steroid-resistant nephrotic syndrome (e.g., LAGE3, NPHS1, NPHS2, LMX1B, and SMARCAL1) and tubulopathies (e.g., CTNS and AQP2). The genetic diagnostic yield was higher among Arabs compared to Jewish individuals (55% vs. 29%) and in children from consanguineous compared to nonconsanguineous families (63% vs. 29%). In 5 participants (14%) with genetic diagnoses, the molecular diagnosis did not correspond with the pre-exome diagnosis. Genetic diagnosis has a potential influence on clinical management in 27 of 36 participants (75%). Conclusion: Exome sequencing in an unbiased Israeli nationwide dialysis-treated kidney failure pediatric cohort resulted in a genetic diagnostic yield of 45% and can often affect clinical decision making.

6.
Neurogenetics ; 24(4): 303-310, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37658208

RESUMO

Alexander disease (AxD) is a rare autosomal dominant leukodystrophy caused by heterozygous mutations in the glial fibrillary acid protein (GFAP) gene. The age of symptoms onset ranges from infancy to adulthood, with variable clinical and radiological manifestations. Adult-onset AxD manifests as a chronic and progressive condition, characterized by bulbar, motor, cerebellar, and other clinical signs and symptoms. Neuroradiological findings typically involve the brainstem and cervical spinal cord. Adult-onset AxD has been described in diverse populations but is rare in Israel. We present a series of patients diagnosed with adult-onset AxD from three families, all of Jewish Syrian descent. Five patients (4 females) were diagnosed with adult-onset AxD due to the heterozygous mutation c.219G > A, p.Met73Ile in GFAP. Age at symptoms onset ranged from 48 to 61 years. Clinical characteristics were typical and involved progressive bulbar and gait disturbance, followed by pyramidal and cerebellar impairment, dysautonomia, and cognitive decline. Imaging findings included medullary and cervical spinal atrophy and mostly infratentorial white matter hyperintensities. A newly recognized cluster of adult-onset AxD in Jews of Syrian origin is presented. This disorder should be considered in differential diagnosis in appropriate circumstances. Genetic counselling for family members is required in order to discuss options for future family planning.


Assuntos
Doença de Alexander , Feminino , Humanos , Adulto , Pessoa de Meia-Idade , Doença de Alexander/diagnóstico por imagem , Doença de Alexander/genética , Judeus/genética , Síria , Proteína Glial Fibrilar Ácida/genética , Mutação , Atrofia
7.
Mol Genet Metab ; 140(3): 107702, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37776842

RESUMO

Propionic acidemia (PA) is an autosomal recessive metabolic disorder caused by variants in PCCA or PCCB, both sub-units of the propionyl-CoA carboxylase (PCC) enzyme. PCC is required for the catabolism of certain amino acids and odd-chain fatty acids. In its absence, the accumulated toxic metabolites cause metabolic acidosis, neurologic symptoms, multi-organ dysfunction and possible death. The clinical presentation of PA is highly variable, with typical onset in the neonatal or early infantile period. We encountered two families, whose children were diagnosed with PA. Exome sequencing (ES) failed to identify a pathogenic variant, and we proceeded with genome sequencing (GS), demonstrating homozygosity to a deep intronic PCCB variant. RNA analysis established that this variant creates a pseudoexon with a premature stop codon. The parents are variant carriers, though three of them display pseudo-homozygosity due to a common large benign intronic deletion on the second allele. The parental presumed homozygosity merits special attention, as it masked the causative variant at first, which was resolved only by RNA studies. Arriving at a rapid diagnosis, whether biochemical or genetic, can be crucial in directing lifesaving care, concluding the diagnostic odyssey, and allowing the family prenatal testing in subsequent pregnancies. This study demonstrates the power of integrative genetic studies in reaching a diagnosis, utilizing GS and RNA analysis to overcome ES limitations and define pathogenicity. Importantly, it highlights that intronic deletions should be taken into consideration when analyzing genomic data, so that pseudo-homozygosity would not be misinterpreted as true homozygosity, and pathogenic variants will not be mislabeled as benign.


Assuntos
Acidemia Propiônica , Recém-Nascido , Criança , Humanos , Acidemia Propiônica/genética , RNA , Metilmalonil-CoA Descarboxilase/genética , Mutação , Códon sem Sentido
8.
EMBO Mol Med ; 15(5): e16775, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37013609

RESUMO

Topoisomerase 3α (TOP3A) is an enzyme that removes torsional strain and interlinks between DNA molecules. TOP3A localises to both the nucleus and mitochondria, with the two isoforms playing specialised roles in DNA recombination and replication respectively. Pathogenic variants in TOP3A can cause a disorder similar to Bloom syndrome, which results from bi-allelic pathogenic variants in BLM, encoding a nuclear-binding partner of TOP3A. In this work, we describe 11 individuals from 9 families with an adult-onset mitochondrial disease resulting from bi-allelic TOP3A gene variants. The majority of patients have a consistent clinical phenotype characterised by bilateral ptosis, ophthalmoplegia, myopathy and axonal sensory-motor neuropathy. We present a comprehensive characterisation of the effect of TOP3A variants, from individuals with mitochondrial disease and Bloom-like syndrome, upon mtDNA maintenance and different aspects of enzyme function. Based on these results, we suggest a model whereby the overall severity of the TOP3A catalytic defect determines the clinical outcome, with milder variants causing adult-onset mitochondrial disease and more severe variants causing a Bloom-like syndrome with mitochondrial dysfunction in childhood.


Assuntos
Doenças Mitocondriais , Doenças Musculares , Humanos , Mitocôndrias/genética , DNA Mitocondrial/genética , Doenças Mitocondriais/genética , Síndrome , Instabilidade Genômica
9.
Front Genet ; 14: 1135267, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36999056

RESUMO

Introduction: Hereditary orotic aciduria is an extremely rare, autosomal recessive disease caused by deficiency of uridine monophosphate synthase. Untreated, affected individuals may develop refractory megaloblastic anemia, neurodevelopmental disabilities, and crystalluria. Newborn screening has the potential to identify and enable treatment of affected individuals before they become significantly ill. Methods: Measuring orotic acid as part of expanded newborn screening using flow injection analysis tandem mass spectrometry. Results: Since the addition of orotic acid measurement to the Israeli routine newborn screening program, 1,492,439 neonates have been screened. The screen has identified ten Muslim Arab newborns that remain asymptomatic so far, with DBS orotic acid elevated up to 10 times the upper reference limit. Urine organic acid testing confirmed the presence of orotic aciduria along with homozygous variations in the UMPS gene. Conclusion: Newborn screening measuring of orotic acid, now integrated into the routine tandem mass spectrometry panel, is capable of identifying neonates with hereditary orotic aciduria.

11.
Am J Hum Genet ; 110(1): 120-145, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36528028

RESUMO

Eukaryotic initiation factor-4A2 (EIF4A2) is an ATP-dependent RNA helicase and a member of the DEAD-box protein family that recognizes the 5' cap structure of mRNAs, allows mRNA to bind to the ribosome, and plays an important role in microRNA-regulated gene repression. Here, we report on 15 individuals from 14 families presenting with global developmental delay, intellectual disability, hypotonia, epilepsy, and structural brain anomalies, all of whom have extremely rare de novo mono-allelic or inherited bi-allelic variants in EIF4A2. Neurodegeneration was predominantly reported in individuals with bi-allelic variants. Molecular modeling predicts these variants would perturb structural interactions in key protein domains. To determine the pathogenicity of the EIF4A2 variants in vivo, we examined the mono-allelic variants in Drosophila melanogaster (fruit fly) and identified variant-specific behavioral and developmental defects. The fruit fly homolog of EIF4A2 is eIF4A, a negative regulator of decapentaplegic (dpp) signaling that regulates embryo patterning, eye and wing morphogenesis, and stem cell identity determination. Our loss-of-function (LOF) rescue assay demonstrated a pupal lethality phenotype induced by loss of eIF4A, which was fully rescued with human EIF4A2 wild-type (WT) cDNA expression. In comparison, the EIF4A2 variant cDNAs failed or incompletely rescued the lethality. Overall, our findings reveal that EIF4A2 variants cause a genetic neurodevelopmental syndrome with both LOF and gain of function as underlying mechanisms.


Assuntos
Proteínas de Drosophila , Epilepsia , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Animais , Humanos , Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Epilepsia/genética , Fator de Iniciação 4A em Eucariotos/genética , Deficiência Intelectual/genética , Hipotonia Muscular/genética , Transtornos do Neurodesenvolvimento/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
12.
J Inherit Metab Dis ; 46(2): 232-242, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36515074

RESUMO

Galactosemia is an inborn disorder of carbohydrate metabolism of which early detection can prevent severe illness. Although the assay for galactose-1-phosphate uridyltransferase (GALT) enzyme activity has been available since the 1960s, many issues prevented it from becoming universal. In order to develop the Israeli newborn screening pilot algorithm for galactosemia, flow injection analysis tandem mass spectrometry measurement of galactose-1-phosphate in archived dried blood spots from newborns with classical galactosemia, galactosemia variants, epimerase deficiency, and normal controls, was conducted. Out of 431 330 newborns screened during the pilot study (30 months), two with classical galactosemia and four with epimerase deficiency were identified and confirmed. Five false positives and no false negatives were recorded. Following this pilot study, the Israeli final and routine newborn screening algorithm, as recommended by the Advisory Committee to the National Newborn Screening Program, now consists of galactose-1-phosphate measurement integrated into the routine tandem mass spectrometry panel as the first-tier screening test, and GALT enzyme activity as the second-tier performed to identify only newborns suspected to be at risk for classical galactosemia. The GALT enzyme activity cut-off used in the final algorithm was lowered in order to avoid false positives.


Assuntos
Galactosemias , Humanos , Recém-Nascido , Galactosemias/diagnóstico , Triagem Neonatal/métodos , Projetos Piloto , UTP-Hexose-1-Fosfato Uridililtransferase , Racemases e Epimerases
13.
Front Immunol ; 13: 1041315, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466854

RESUMO

Purpose: Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) is an important regulator of necroptosis and inflammatory responses. We present the clinical features, genetic analysis and immune work-up of two patients with infantile-onset inflammatory bowel disease (IBD) resulting from RIPK1 mutations. Methods: Whole exome and Sanger sequencing was performed in two IBD patients. Mass cytometry time of flight (CyTOF) was conducted for in-depth immunophenotyping on one of the patient's peripheral blood mononuclear cells, and compared to control subjects and patients with Crohn's disease. Results: The patients presented with severe colitis and perianal fistulas in the first months of life, without severe/atypical infections. Genetic studies identified pathogenic genetic variants in RIPK1 (Patient 1, A c.1934C>T missense mutation in Exon 11; Patient 2, c.580G>A missense mutation residing in Exon 4). Protein modeling demonstrated that the mutation in Patient 1 displaces a water molecule, potentially disrupting the local environment, and the mutation in Patient 2 may lead to disruption of the packing and conformation of the kinase domain. Immunofluorescence RIPK1 staining in rectal biopsies demonstrated no expression for Patient 1 and minimal expression for Patient 2, compared to controls and patients with active Crohn's disease. Using CyTOF unbiased clustering analysis, we identified peripheral immune dysregulation in one of these patients, characterized by an increase in IFNγ CD8+ T cells along with a decrease in monocytes, dendritic cells and B cells. Moreover, RIPK1-deficient patient's immune cells exhibited decreased IL-6 production in response to lipopolysaccharide (LPS) across multiple cell types including T cells, B cells and innate immune cells. Conclusions: Mutations in RIPK1 should be considered in very young patients presenting with colitis and perianal fistulas. Given RIPK1's role in inflammasome activation, but also in epithelial cells, it is unclear whether IL1 blockade or allogeneic hematopoietic stem cell transplantation can suppress or cure the hyper-inflammatory response in these patients. Additional studies in humans are required to better define the role of RIPK1 in regulating intestinal immune responses, and how treatment can be optimized for patients with RIPK1 deficiency.


Assuntos
Colite , Doença de Crohn , Fístula , Doenças Inflamatórias Intestinais , Humanos , Doença de Crohn/genética , Leucócitos Mononucleares , Linfócitos T CD8-Positivos , Doenças Inflamatórias Intestinais/genética , Mutação , Doença Crônica , Proteína Serina-Treonina Quinases de Interação com Receptores/genética
14.
Front Genet ; 13: 991721, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204321

RESUMO

Introduction: Vici Syndrome is a rare, severe, neurodevelopmental/neurodegenerative disorder with multi-systemic manifestations presenting in infancy. It is mainly characterized by global developmental delay, seizures, agenesis of the corpus callosum, hair and skin hypopigmentation, bilateral cataract, and varying degrees of immunodeficiency, among other features. Vici Syndrome is caused by biallelic pathogenic variants in EPG5, resulting in impaired autophagy. Thus far, the condition has been reported in less than a hundred individuals. Objective and Methods: We aimed to characterize the clinical and molecular findings in individuals harboring biallelic EPG5 variants, recruited from four medical centers in Israel. Furthermore, we aimed to utilize a machine learning-based tool to assess facial features of Vici syndrome. Results: Eleven cases of Vici Syndrome from five unrelated families, one of which was diagnosed prenatally with subsequent termination of pregnancy, were recruited. A total of five disease causing variants were detected in EPG5: two novel: c.2554-5A>G and c.1461delC; and 3 previously reported: c.3447G>A, c.5993C>G, and c.1007A>G, the latter previously identified in several patients of Ashkenazi-Jewish (AJ) descent. Amongst 140,491 individuals screened by the Dor Yeshorim Program, we show that the c.1007A>G variant has an overall carrier frequency of 0.45% (1 in 224) among AJ individuals. Finally, based on two-dimensional facial photographs of individuals with Vici syndrome (n = 19), a composite facial mask was created using the DeepGestalt algorithm, illustrating facial features typical of this disorder. Conclusion: We report on ten children and one fetus from five unrelated families, affected with Vici syndrome, and describe prenatal and postnatal characteristics. Our findings contribute to the current knowledge regarding the molecular basis and phenotypic features of this rare syndrome. Additionally, the deep learning-based facial gestalt adds to the clinician's diagnostic toolbox and may aid in facilitating identification of affected individuals.

15.
Am J Med Genet A ; 188(11): 3262-3277, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36209351

RESUMO

Protein phosphatase 2A (PP2A) is a heterotrimeric serine/threonine phosphatase that regulates numerous biological processes. PPP2R1A encodes the scaffolding "Aα" subunit of PP2A. To date, nearly 40 patients have been previously reported with 19 different pathogenic PPP2R1A variants, with phenotypes including intellectual disability, developmental delay, epilepsy, infant agenesis/dysgenesis of the corpus callosum, and dysmorphic features. Apart from a single case, severe congenital heart defects (CHD) have not been described. We report four new unrelated individuals with pathogenic heterozygous PPP2R1A variants and CHD and model the crystal structure of several variants to investigate mechanisms of phenotype disparity. Individuals 1 and 2 have a previously described variant (c.548G>A, p.R183Q) and similar phenotypes with severe ventriculomegaly, agenesis/dysgenesis of the corpus callosum, and severe CHD. Individual 3 also has a recurrent variant (c.544C>T, p.R182W) and presented with agenesis of corpus callosum, ventriculomegaly, mild pulmonic stenosis, and small patent foramen ovale. Individual 4 has a novel variant (c.536C>A, p.P179H), ventriculomegaly, and atrial septal defect. To conclude, we propose expansion of the phenotype of PPP2R1A neurodevelopmental disorder to include CHD. Further, the R183Q variant has now been described in three individuals, all with severe neurologic abnormalities, severe CHD, and early death suggesting that this variant may be particularly deleterious.


Assuntos
Cardiopatias Congênitas , Hidrocefalia , Malformações do Sistema Nervoso , Transtornos do Neurodesenvolvimento , Cardiopatias Congênitas/complicações , Cardiopatias Congênitas/genética , Humanos , Transtornos do Neurodesenvolvimento/genética , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Serina , Fatores de Transcrição
16.
Genet Med ; 24(11): 2249-2261, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36074124

RESUMO

PURPOSE: The clinical spectrum of motile ciliopathies includes laterality defects, hydrocephalus, and infertility as well as primary ciliary dyskinesia when impaired mucociliary clearance results in otosinopulmonary disease. Importantly, approximately 30% of patients with primary ciliary dyskinesia lack a genetic diagnosis. METHODS: Clinical, genomic, biochemical, and functional studies were performed alongside in vivo modeling of DAW1 variants. RESULTS: In this study, we identified biallelic DAW1 variants associated with laterality defects and respiratory symptoms compatible with motile cilia dysfunction. In early mouse embryos, we showed that Daw1 expression is limited to distal, motile ciliated cells of the node, consistent with a role in left-right patterning. daw1 mutant zebrafish exhibited reduced cilia motility and left-right patterning defects, including cardiac looping abnormalities. Importantly, these defects were rescued by wild-type, but not mutant daw1, gene expression. In addition, pathogenic DAW1 missense variants displayed reduced protein stability, whereas DAW1 loss-of-function was associated with distal type 2 outer dynein arm assembly defects involving axonemal respiratory cilia proteins, explaining the reduced cilia-induced fluid flow in particle tracking velocimetry experiments. CONCLUSION: Our data define biallelic DAW1 variants as a cause of human motile ciliopathy and determine that the disease mechanism involves motile cilia dysfunction, explaining the ciliary beating defects observed in affected individuals.


Assuntos
Transtornos da Motilidade Ciliar , Ciliopatias , Proteínas do Citoesqueleto , Animais , Humanos , Camundongos , Axonema/genética , Cílios/metabolismo , Transtornos da Motilidade Ciliar/genética , Transtornos da Motilidade Ciliar/metabolismo , Transtornos da Motilidade Ciliar/patologia , Ciliopatias/genética , Ciliopatias/metabolismo , Ciliopatias/patologia , Proteínas do Citoesqueleto/genética , Mutação , Proteínas/genética , Peixe-Zebra/genética
17.
Front Pediatr ; 10: 883173, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35967585

RESUMO

Background: During the process of generating diverse T and B cell receptor (TCR and BCR, respectively) repertoires, double-strand DNA breaks are produced. Subsequently, these breaks are corrected by a complex system led by the non-homologous end-joining (NHEJ). Pathogenic variants in genes involved in this process, such as the NHEJ1 gene, cause severe combined immunodeficiency syndrome (SCID) along with neurodevelopmental disease and sensitivity to ionizing radiation. Objective: To provide new clinical and immunological insights on NHEJ1 deficiency arising from a newly diagnosed patient with severe immunodeficiency. Materials and methods: A male infant, born to consanguineous parents, suspected of having primary immunodeficiency underwent immunological and genetic workup. This included a thorough assessment of T cell phenotyping and lymphocyte activation by mitogen stimulation tests, whole-exome sequencing (WES), TCR repertoire Vß repertoire via flow cytometry analysis, and TCR and BCR repertoire analysis via next-generation sequencing (NGS). Results: Clinical findings included microcephaly, recurrent pneumonia, and failure to thrive. An immune workup revealed lymphopenia, reduced T cell function, and hypogammaglobulinemia. Skewed TCR Vß repertoire, TCR gamma (TRG) repertoire, and BCR repertoire were determined in the patient. Genetic analysis identified a novel homozygous missense pathogenic variant in XLF/Cernunnos: c.A580Ins.T; p.M194fs. The patient underwent a successful hematopoietic stem cell transplantation (HSCT). Conclusion: A novel NHEJ1 pathogenic variant is reported in a patient who presented with SCID phenotype that displayed clonally expanded T and B cells. An adjusted HSCT was safe to ensure full T cell immune reconstitution.

18.
Eur J Med Genet ; 65(6): 104518, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35550444

RESUMO

Avoidance of fasting and regular ingestion of uncooked-cornstarch have long been the mainstay dietary treatment of Glycogen Storage Disease type Ia (GSD-Ia). However, GSD-Ia patients who despite optimal dietary treatment show poor glycemic control and are intolerant to cornstarch, present a complex clinical challenge. We pursued Whole Exome Sequencing (WES) in three such unrelated patients, to both confirm a molecular diagnosis of GSD-Ia, and seek additional variants in other genes (e.g. genes associated with amylase production) which may explain their persistent symptoms. WES confirmed the GSD-Ia diagnosis, with all three probands harboring the homozygous p.R83C variant in G6PC. While no other significant variants were identified for patients A and B, a homozygous p.G276V variant in the SI gene was detected in patient C, establishing the dual-diagnosis of GSD-Ia and Sucrase-Isomaltase Deficiency. To conclude, we suggest that WES should be considered in GSD-Ia patients who show persistent symptoms despite optimal dietary management.


Assuntos
Glucose-6-Fosfatase , Doença de Depósito de Glicogênio Tipo I , Glucose-6-Fosfatase/genética , Doença de Depósito de Glicogênio Tipo I/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Amido
19.
Front Immunol ; 13: 886117, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35603181

RESUMO

The transcription factor GATA2 plays a key role in the survival and self-renewal of hematopoietic stem and progenitor cells. Autosomal dominant variants in GATA2 cause a broad spectrum of heterogeneous phenotypes. Here, we present our experience with GATA2 deficiency in a retrospective multicenter analysis of computerized medical records of adult patients (age ≥18 years) treated between 2018 and 2022 at Shaare Zedek Medical Center in Jerusalem and Sheba Tel-Hashomer Medical Center in Ramat Gan, Israel. Two male and two female patients with GATA2 deficiency were identified. Three of the patients presented with symptoms in adult life and all patients were diagnosed as adults. Age at presentation was 10.5-36 years and age at diagnosis 24-47 years. Diagnosis was delayed in all patients by 1-24.5 years. The phenotypic diversity was notable. Patients presented with myelodysplastic syndrome (n=2), pulmonary alveolar proteinosis (n=1), and recurrent viral (n=1), bacterial (n=3), and mycobacterial (n=1) infections. Bone marrow biopsy revealed cytogenetic abnormalities in one patient (monosomy 7). Patients were diagnosed by exome sequencing (n=3) and Sanger sequencing of the coding exons in GATA2 (n=1). Novel heterozygous GATA2 variants (c.177C>A, p.Y59* and c.610dup, p.R204Pfs*78) were identified in two patients. Immune workup revealed B cell lymphopenia and monocytopenia in all tested patients. One patient died from overwhelming sepsis despite all patients being treated with antibiotics and anti-mycobacterials. Our cohort highlights the phenotypic diversity, late presentation, and delayed diagnosis of GATA2 deficiency. Increased awareness of this primary immune deficiency presenting in adult life is needed and should involve a high index of suspicion.


Assuntos
Deficiência de GATA2 , Síndromes Mielodisplásicas , Medula Óssea , Diagnóstico Tardio , Feminino , Deficiência de GATA2/diagnóstico , Deficiência de GATA2/genética , Fator de Transcrição GATA2/genética , Humanos , Masculino , Fenótipo
20.
Front Pediatr ; 10: 844845, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35433545

RESUMO

The role of lysine methyltransferases (KMTs) and demethylases (KDMs) in the regulation of chromatin modification is well-established. Recently, deleterious heterozygous variants in KMT5B were implicated in individuals with intellectual disability (ID) and/or autism spectrum disorder. We describe three unrelated patients with global developmental delay (GDD) or ID, macrocephaly and additional features. Using whole exome sequencing, each of the probands was found to harbor a distinct de novo heterozygous disease-causing variant in KMT5B: c.541C > G (p.His181Asp); c.833A > T (p.Asn278Ile); or c.391_394delAAAG (p.Lys131GlufsTer6). We discuss herein their clinical presentations, and compare them to those of previously reported patients. Furthermore, using a three-dimensional computational model of the KMT5B protein, we demonstrate the predicted structural effects of the two missense variants. Our findings support the role of de novo missense and nonsense variants in KMT5B-associated GDD/ID, and suggest that this gene should be considered in the differential diagnosis of neurodevelopmental disorders accompanied by macrocephaly and/or overgrowth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...